Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627676

RESUMO

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Assuntos
Exoma , Inativação do Cromossomo X , Adulto , Humanos , Feminino , Transcriptoma , Sequenciamento do Exoma , Cromossomos Humanos X/genética
2.
Lung ; 202(2): 151-156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461429

RESUMO

BACKGROUND: Lung biopsy remains the gold standard in the diagnosis of fibrotic interstitial lung disease (F-ILD), but there is a growing appreciation of the role of pathogenic gene variants in telomere and surfactant protein genes, especially in familial pulmonary fibrosis (FPF). Pleuroparenchymal fibroelastosis (PPFE) is a rare disease that can coexist with different patterns of F-ILD, including FPF. It can be progressive and often leads to respiratory failure and death. This study tested the hypothesis that genetic testing goes beyond radiological and histological findings in PPFE and other F-ILD further informing clinical decision-making for patients and affected family members by identifying pathological gene variants in telomere and surfactant protein genes. METHODS: This is a retrospective review of 70 patients with F-ILD in the setting of FPF or premature lung fibrosis. Six out of 70 patients were diagnosed with PPFE based on radiological or histological characteristics. All patients underwent telomere length evaluation in peripheral blood by Flow-FISH or genetic testing using a customized exome-based panel that included telomere and surfactant protein genes associated with lung fibrosis. RESULTS: Herein, we identified six individuals where radiographic or histopathological analyses of PPFE were linked with telomere biology disorders (TBD) or variants in surfactant protein genes. Each case involved individuals with either personal early-onset lung fibrosis or a family history of the disease. Assessments of telomere length and genetic testing offered insights beyond traditional radiological and histopathological evaluations. CONCLUSION: Detecting anomalies in TBD-related or surfactant protein genes can significantly refine the diagnosis and treatment strategies for individuals with PPFE and other F-ILD.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/genética , Fibrose Pulmonar/complicações , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico , Fibrose , Testes Genéticos , Tensoativos , Pulmão/diagnóstico por imagem , Pulmão/patologia
3.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Facies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907381

RESUMO

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Assuntos
Variação Genética , Doença de Depósito de Glicogênio Tipo II , Recém-Nascido , Humanos , Estados Unidos , Testes Genéticos/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Genoma Humano , Genômica/métodos
5.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886596

RESUMO

The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study we aimed to investigate the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. Cholangiocytes obtained from PSC and non-PSC patients by endoscopic retrograde cholangiography (ERC) were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing (GS). Unsupervised clustering of all integrated scRNA-seq data identified 8 cholangiocyte clusters which did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, noted by an increased number of differentially expressed genes (DEG) by transcriptomics, and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, GS identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. In conclusion, PSC and non-PSC patient derived ECO respond differently to IL-17 stimulation implicating this pathway in the pathogenesis of PSC.

6.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609196

RESUMO

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

7.
J Transl Med ; 21(1): 410, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353797

RESUMO

BACKGROUND: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. METHODS: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. RESULTS: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. CONCLUSION: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Estados Unidos , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Atenção Terciária à Saúde , Medicina Genômica , Testes Genéticos , Aconselhamento Genético
8.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167966

RESUMO

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Doenças Musculares/genética , Oxirredutases , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/efeitos adversos
11.
Transplantation ; 107(4): 952-960, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253919

RESUMO

BACKGROUND: Recent studies identified underlying genetic causes in a proportion of patients with various forms of kidney disease. In particular, genetic testing reclassified some focal segmental glomerulosclerosis (FSGS) cases into collagen type 4 (COL4)-related nephropathy. This knowledge has major implications for counseling prospective transplant recipients about recurrence risk and screening biologically related donors. We describe our experience incorporating genetic testing in our kidney transplant multidisciplinary practice. METHODS: Patients' DNA was analyzed using whole exome sequencing for a comprehensive kidney gene panel encompassing 344 genes associated with kidney diseases and candidate genes highly expressed in the kidney. Results were correlated with phenotype by a multidisciplinary committee of nephrologists, renal pathologists, geneticists, and genetic counselors. Between October 2018 and July 2020, 30 recipient and 5 donor candidates completed testing. RESULTS: Among recipient candidates, 24 (80%) carried the diagnosis of FSGS, 2 (6.7%) tubulointerstitial nephritis, and 1 (3.3%) nephrolithiasis, and 3 (10%) had an unknown cause of kidney disease. The yield for pathogenic/likely pathogenic variants was 43.3%, with majority being COL4 variants (53.8%). Among those with FSGS diagnosis, the yield was 10 of 24 (41.6%), with 29% reclassified into a COL4-related nephropathy. Family history of kidney disease was the only clinical characteristic difference between recipients with positive and negative results (76.9 versus 29.4%; P = 0.025). One of 5 donors tested positive for a pathogenic/likely pathogenic variant and was excluded from donation. CONCLUSIONS: We conclude that thoughtful use of genetic testing can be valuable for kidney donor selection and transplant recipient management.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/complicações , Estudos Prospectivos , Rim/patologia
12.
Cytokine ; 162: 156088, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462220

RESUMO

INTRODUCTION: Hepatic Glycogen Storage Diseases (GSD) are rare genetic disorders in which the gluconeogenesis pathway is impaired. Cytokines control virtually every aspect of physiology and may help to elucidate some unsolved questions about phenotypes presented by GSD patients. METHODS: This was an exploratory study in which 27 GSD patients on treatment (Ia = 16, Ib = 06, III = 02, IXα = 03) and 24 healthy age- and sex-matched subjects had plasma samples tested for a panel of 20 cytokines (G-CSF,GM-CSF, IL-1α,IL-1ß, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, GRO, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, MDC/CCL22, IFN-γ, TNF-α, TNF-ß, VEGF) through a multiplex kit and analyzed in comparison to controls and among patients, regarding to clinical features as anemia, hepatic adenocarcinoma and triglyceride levels. RESULTS: Patients (GSD-Ia/III/IX) presented reduced levels of IL-4 (p = 0.040), MIP-1α/CCL3 (p = 0.003), MDC/CCL22 (p < 0.001), TNF-ß (p = 0.045) and VEGF (p = 0.043) compared to controls. When different types of GSD were compared, G-CSF was higher in GSD-Ib than -Ia (p < 0.001) and than -III/IX (p = 0.033) patients; IL-10 was higher in GSD-Ib than in GSD-Ia patients (p = 0.019); and GSD-III/IX patients had increased levels of IP-10/CXCL10 than GSD-Ib patients (p = 0.019). When GSD-I patients were gathered into the same group and compared with GSD-III/IX patients, IP10/CXCL10 and MCP-1 were higher in the latter group (p = 0.005 and p = 0.013, respectively). GSD-I patients with anemia presented higher levels of IL-4 and MIP-1α in comparison with patients who had not. Triglyceride level was correlated with neutrophil count and MDC levels on GSD-Ia patients without HCA. CONCLUSION: Altogether, altered levels of cytokines in GSD-I patients reflect an imbalance in immunoregulation process. This study also indicates that neutrophils and some cytokines are affected by triglyceride levels, and future studies on the theme should consider this variable.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Interleucina-10 , Humanos , Quimiocina CCL3 , Quimiocina CXCL10 , Interleucina-4 , Linfotoxina-alfa , Fator A de Crescimento do Endotélio Vascular , Citocinas , Doença de Depósito de Glicogênio Tipo I/patologia , Fator Estimulador de Colônias de Granulócitos , Triglicerídeos
13.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
14.
BMC Rheumatol ; 6(1): 54, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038944

RESUMO

BACKGROUND: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome) is a recently described syndrome caused by a somatic missense variant at the methionine-41 (p.(Met41)) position in the ubiquitin-like modifier activating enzyme 1 (UBA1) in Xp11.3. Germline pathogenic variants in UBA1 are associated with a distinct phenotype: a syndrome with severe neurologic features associated with loss of anterior horn cells and infantile death denominated X-Linked Spinal Muscular Atrophy 2 (SMAX2) (OMIM 301,830). CASE PRESENTATION: We report a male individual with the phenotype of VEXAS syndrome that was initially identified through exome sequencing (ES) as having a hemizygous germline variant in UBA1 due to high variant allele frequency (VAF). Research Sanger sequencing was able to confirm the absence of the p.(Met41Val) variant in a skin biopsy and in gastric mucosa tissue sample confirming the variant happened as a postzygotic event. CONCLUSIONS: The present case exemplifies the diagnostic challenge that was imposed by the high VAF detected by ES that failed to correctly demonstrate that the variant was in a mosaic state. Sequencing of different tissues should be considered when there is conflict between the UBA1 variant status and the clinical findings.

15.
Genet Med ; 24(4): 894-904, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35042660

RESUMO

PURPOSE: TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS: Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS: All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION: We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.


Assuntos
Defeitos Congênitos da Glicosilação , Deficiência Intelectual , Microcefalia , Defeitos Congênitos da Glicosilação/genética , Glicosilação , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Microcefalia/genética , Mutação de Sentido Incorreto
16.
Am J Med Genet A ; 188(3): 919-925, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797033

RESUMO

An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.


Assuntos
Glaucoma , Sistema Urinário , Glaucoma/diagnóstico , Glaucoma/genética , Humanos , Lactente , Rim/anormalidades , Masculino , Fenótipo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma
17.
Kidney Med ; 3(5): 785-798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746741

RESUMO

RATIONALE & OBJECTIVE: The etiology of kidney disease remains unknown in many individuals with chronic kidney disease (CKD). We created the Mayo Clinic Nephrology Genomics Clinic to improve our ability to integrate genomic and clinical data to identify the etiology of unexplained CKD. STUDY DESIGN: Retrospective study. SETTING & PARTICIPANTS: An essential component of our program is the Nephrology Genomics Board which consists of nephrologists, geneticists, pathologists, translational omics scientists, and trainees who interpret the patient's clinical and genetic data. Since September 2016, the Board has reviewed 163 cases (15 cystic, 100 glomerular, 6 congenital anomalies of kidney and urinary tract (CAKUT), 20 stones, 15 tubulointerstitial, and 13 other). ANALYTICAL APPROACH: Testing was performed with targeted panels, single gene analysis, or analysis of kidney-related genes from exome sequencing. Variant classification was obtained based on the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: A definitive genetic diagnosis was achieved for 50 families (30.7%). The highest diagnostic yield was obtained in individuals with tubulointerstitial diseases (53.3%), followed by congenital anomalies of the kidney and urological tract (33.3%), glomerular (31%), cysts (26.7%), stones (25%), and others (15.4%). A further 20 (12.3%) patients had variants of interest, and variant segregation, and research activities (exome, genome, or transcriptome sequencing) are ongoing for 44 (40%) unresolved families. LIMITATIONS: Possible overestimation of diagnostic rate due to inclusion of individuals with variants with evidence of pathogenicity but classified as of uncertain significance by the clinical laboratory. CONCLUSIONS: Integration of genomic and research testing and multidisciplinary evaluation in a nephrology cohort with CKD of unknown etiology or suspected monogenic disease provided a diagnosis in a third of families. These diagnoses had prognostic implications, and often changes in management were implemented.

18.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
20.
JIMD Rep ; 60(1): 32-41, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258139

RESUMO

BACKGROUND: Mucopolysaccharidoses (MPS) is a group of hereditary multisystemic lysosomal disorders. Most neuroimaging studies in MPS have focused on the supratentorial compartment and craniocervical junction abnormalities, and data regarding posterior fossa findings are scarce in the literature. Thus, our purpose is to describe posterior fossa findings on magnetic resonance imaging (MRI) of MPS patients. METHODS: We reviewed routine MRI scans of MPS patients being followed up at our institution (types I, II, III, IV, and VI), focusing on posterior fossa structures. RESULTS: Forty-seven MPS patients were included. MRI-visible perivascular spaces were commonly found in the midbrain and adjacent to the dentate nuclei (85% and 55% of patients, respectively). White-matter lesion was not identified in most cases. Its most frequent localizations were in the pons and cerebellum (34% and 30% of patients, respectively). Enlargement of cerebrospinal fluid (CSF) spaces in the posterior fossa was present in 55% of individuals and was more frequent in neuronopathic patients (73% vs 40%; P = .02). Cerebellar volume was classified as normal, apparent macrocerebellum, atrophic, and hypoplastic in 38%, 38%, 21%, and 3% of patients, respectively. A depression of the posterior fossa floor in the midline sagittal plane was found in 22 patients (47%), which was statistical significantly associated with enlargement of CSF spaces (P = .02) and with apparent macrocerebellum (P = .03). CONCLUSION: The present study compiled the main posterior fossa findings in MPS patients. Classically described in the supratentorial compartment, MRI-visible perivascular spaces, white matter lesions, and enlarged perivascular spaces were also found in the posterior fossa. However, atrophy, which commonly affects cerebral hemispheres, was not the most frequent cerebellar morphology found in our study. Moreover, potential findings for future research were described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...